Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(10): 1844-1853, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37644805

RESUMO

OBJECTIVES: Pathogenic variants in AIFM1 have been associated with a wide spectrum of disorders, spanning from CMT4X to mitochondrial encephalopathy. Here we present a novel phenotype and review the existing literature on AIFM1-related disorders. METHODS: We performed EEG recordings, brain MRI and MR Spectroscopy, metabolic screening, echocardiogram, clinical exome sequencing (CES) and family study. Effects of the variant were established on cultured fibroblasts from skin punch biopsy. RESULTS: The patient presented with drug-resistant, electro-clinical, multifocal seizures 6 h after birth. Brain MRI revealed prominent brain swelling of both hemispheres and widespread signal alteration in large part of the cortex and of the thalami, with sparing of the basal nuclei. CES analysis revealed the likely pathogenic variant c.5T>C; p.(Phe2Ser) in the AIFM1 gene. The affected amino acid residue is located in the mitochondrial targeting sequence. Functional studies on cultured fibroblast showed a clear reduction in AIFM1 protein amount and defective activities of respiratory chain complexes I, III and IV. No evidence of protein mislocalization or accumulation of precursor protein was observed. Riboflavin, Coenzyme Q10 and thiamine supplementation was therefore given. At 6 months of age, the patient exhibited microcephaly but did not experience any further deterioration. He is still fed orally and there is no evidence of muscle weakness or atrophy. INTERPRETATION: This is the first AIFM1 case associated with neonatal seizures and diffuse white matter involvement with relative sparing of basal ganglia, in the absence of clinical signs suggestive of myopathy or motor neuron disease.


Assuntos
Encefalomiopatias Mitocondriais , Doença dos Neurônios Motores , Masculino , Recém-Nascido , Humanos , Mitocôndrias/genética , Tiamina , Convulsões , Fator de Indução de Apoptose
2.
J Neurosci Res ; 101(9): 1484-1503, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313950

RESUMO

A link between maternal anxiety during pregnancy and adverse socio-emotional outcomes in childhood has been consistently sustained on the very early neurodevelopmental alteration of structural pathways between fetal limbic and cortical brain regions. In this study, we provide follow-up evidence for a feed-forward model linking (i) maternal anxiety, (ii) fetal functional neurodevelopment, (iii) neonatal functional network organization with (iv) socio-emotional neurobehavioral development in early childhood. Namely, we investigate a sample of 16 mother-fetus dyads and show how a maternal state-trait anxiety profile with pregnancy-specific worries can significantly influence functional synchronization patterns between regions of the fetal limbic system (i.e., hippocampus and amygdala) and the neocortex, as assessed through resting-state functional magnetic resonance imaging. Generalization of the findings was supported by leave-one-out cross-validation. We further show how this maternal-fetal cross-talk propagates to functional network topology in the neonate, specifically targeting connector hubs, and further maps onto socio-emotional profiles, assessed through Bayley-III socio-emotional scale in early childhood (i.e., in the 12-24 months range). Based on this evidence, we put forward the hypothesis of a "Maternal-Fetal-Neonatal Anxiety Backbone", through which neurobiological changes driven by maternal anxiety could trigger a divergence in the establishment of a cognitive-emotional development blueprint, in terms of the nascent functional homeostasis between bottom-up limbic and top-down higher-order neuronal circuitry.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Recém-Nascido , Feminino , Gravidez , Humanos , Pré-Escolar , Encéfalo/patologia , Emoções , Feto , Ansiedade
3.
Hum Mol Genet ; 29(2): 177-188, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31868880

RESUMO

Mitochondria undergo continuous cycles of fusion and fission in response to physiopathological stimuli. The key player in mitochondrial fission is dynamin-related protein 1 (DRP1), a cytosolic protein encoded by dynamin 1-like (DNM1L) gene, which relocalizes to the outer mitochondrial membrane, where it assembles, oligomerizes and drives mitochondrial division upon guanosine-5'-triphosphate (GTP) hydrolysis. Few DRP1 mutations have been described so far, with patients showing complex and variable phenotype ranging from early death to encephalopathy and/or optic atrophy. The disease is the consequence of defective mitochondrial fission due to faulty DRP1 function. However, the underlying molecular mechanisms and the functional consequences at mitochondrial and cellular level remain elusive. Here we report on a 5-year-old girl presenting psychomotor developmental delay, global hypotonia and severe ataxia due to axonal sensory neuropathy harboring a novel de novo heterozygous missense mutation in the GTPase domain of DRP1 (NM_012062.3:c.436G>A, NP_036192.2: p.D146N variant in DNM1L). Patient's fibroblasts show hyperfused/balloon-like giant mitochondria, highlighting the importance of D146 residue for DRP1 function. This dramatic mitochondrial rearrangement phenocopies what observed overexpressing DRP1-K38A, a well-known experimental dominant negative version of DRP1. In addition, we demonstrated that p.D146N mutation has great impact on peroxisomal shape and function. The p.D146N mutation compromises the GTPase activity without perturbing DRP1 recruitment or assembly, causing decreased mitochondrial and peroxisomal turnover. In conclusion, our findings highlight the importance of sensory neuropathy in the clinical spectrum of DRP1 variants and, for the first time, the impact of DRP1 mutations on mitochondrial turnover and peroxisomal functionality.


Assuntos
Dinaminas/genética , Fibroblastos/ultraestrutura , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/genética , Doenças do Sistema Nervoso Periférico/genética , Autofagia/genética , Pré-Escolar , Dinaminas/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterozigoto , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Linhagem , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento do Exoma
5.
Lancet ; 388(10043): 476-87, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27289174

RESUMO

BACKGROUND: Metachromatic leukodystrophy (a deficiency of arylsulfatase A [ARSA]) is a fatal demyelinating lysosomal disease with no approved treatment. We aimed to assess the long-term outcomes in a cohort of patients with early-onset metachromatic leukodystrophy who underwent haemopoietic stem-cell gene therapy (HSC-GT). METHODS: This is an ad-hoc analysis of data from an ongoing, non-randomised, open-label, single-arm phase 1/2 trial, in which we enrolled patients with a molecular and biochemical diagnosis of metachromatic leukodystrophy (presymptomatic late-infantile or early-juvenile disease or early-symptomatic early-juvenile disease) at the Paediatric Clinical Research Unit, Ospedale San Raffaele, in Milan. Trial participants received HSC-GT, which consisted of the infusion of autologous HSCs transduced with a lentiviral vector encoding ARSA cDNA, after exposure-targeted busulfan conditioning. The primary endpoints of the trial are safety (toxicity, absence of engraftment failure or delayed haematological reconstitution, and safety of lentiviral vector-tranduced cell infusion) and efficacy (improvement in Gross Motor Function Measure [GMFM] score relative to untreated historical controls, and ARSA activity, 24 months post-treatment) of HSC-GT. For this ad-hoc analysis, we assessed safety and efficacy outcomes in all patients who had received treatment and been followed up for at least 18 months post-treatment on June 1, 2015. This trial is registered with ClinicalTrials.gov, number NCT01560182. FINDINGS: Between April, 2010, and February, 2013, we had enrolled nine children with a diagnosis of early-onset disease (six had late-infantile disease, two had early-juvenile disease, and one had early-onset disease that could not be definitively classified). At the time of analysis all children had survived, with a median follow-up of 36 months (range 18-54). The most commonly reported adverse events were cytopenia (reported in all patients) and mucositis of different grades of severity (in five of nine patients [grade 3 in four of five patients]). No serious adverse events related to the medicinal product were reported. Stable, sustained engraftment of gene-corrected HSCs was observed (a median of 60·4% [range 14·0-95·6] lentiviral vector-positive colony-forming cells across follow-up) and the engraftment level was stable during follow-up; engraftment determinants included the duration of absolute neutropenia and the vector copy number of the medicinal product. A progressive reconstitution of ARSA activity in circulating haemopoietic cells and in the cerebrospinal fluid was documented in all patients in association with a reduction of the storage material in peripheral nerve samples in six of seven patients. Eight patients, seven of whom received treatment when presymptomatic, had prevention of disease onset or halted disease progression as per clinical and instrumental assessment, compared with historical untreated control patients with early-onset disease. GMFM scores for six patients up to the last follow-up showed that gross motor performance was similar to that of normally developing children. The extent of benefit appeared to be influenced by the interval between HSC-GT and the expected time of disease onset. Treatment resulted in protection from CNS demyelination in eight patients and, in at least three patients, amelioration of peripheral nervous system abnormalities, with signs of remyelination at both sites. INTERPRETATION: Our ad-hoc findings provide preliminary evidence of safety and therapeutic benefit of HSC-GT in patients with early-onset metachromatic leukodystrophy who received treatment in the presymptomatic or very early-symptomatic stage. The results of this trial will be reported when all 20 patients have achieved 3 years of follow-up. FUNDING: Italian Telethon Foundation and GlaxoSmithKline.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática/terapia , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Seguimentos , Terapia Genética/métodos , Humanos , Lactente , Itália , Lentivirus , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/cirurgia , Masculino , Resultado do Tratamento
6.
J Mol Neurosci ; 56(1): 212-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25572663

RESUMO

Spinal muscular atrophy (SMA) is a genetic disorder characterized by degeneration of motor neurons and muscle weakness and atrophy. The majority of patients harbor homozygous SMN1 deletions, resulting in an SMN1-null genotype. A variable number of copies of SMN2, the centromeric copy of SMN1, fails to compensate for the absence of SMN1 but can act as a modifier. Less than 5% of patients with SMA display intragenic mutations on the second allele, detectable by direct sequencing. The effects of these mutations are not easily predictable, hindering a clear correlation with the clinical phenotype. We describe a novel SMN1 mutation that affected the donor splice site of exon 7 and resulted in an unusually severe SMA phenotype with rapid fatal outcome in an Italian infant.


Assuntos
Éxons , Atrofia Muscular Espinal/genética , Mutação , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...